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Stimulus frequency otoacoustic emissions (SFOAEs) can have multiple time varying components,

including multiple internal reflections. It is, therefore, necessary to study SFOAEs using techniques

that can represent their time-frequency behavior. Although various time-frequency schemes can be

applied to identify and filter SFOAE components, their accuracy for SFOAE analysis has not been

investigated. The relative performance of these methods is important for accurate characterization

of SFOAEs that may, in turn, enhance the understanding of SFOAE generation. This study using in
silico experiments examined the performance of three linear (short-time Fourier transform, continu-

ous wavelet transform, Stockwell transform) and two nonlinear (empirical mode decomposition

and synchrosqueezed wavelet transform) time-frequency approaches for SFOAE analysis. Their

performances in terms of phase-gradient delay estimation, frequency specificity, and spectral com-

ponent extraction are compared, and the relative merits and limitations of each method are dis-

cussed. Overall, this paper provides a comparative analysis of various time-frequency methods

useful for otoacoustic emission applications. VC 2018 Acoustical Society of America.

https://doi.org/10.1121/1.5022783
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I. INTRODUCTION

Stimulus frequency otoacoustic emissions (SFOAEs)

offer unique opportunities for probing cochlear function non-

invasively. The frequency specificity and relatively simpler

interpretation of SFOAEs offer an advantage over other

evoked emissions such as distortion-product otoacoustic emis-

sions (Kalluri and Shera, 2013). Both the magnitude and

phase of SFOAEs convey information that is important for

characterizing cochlear amplifier behavior. At a given fre-

quency, SFOAEs can have multiple components with differ-

ent delays that originate from cochlear mechanical

irregularities (Sisto and Moleti, 2007). Identification of these

components, their time span, and other features are crucial for

accurate interpretation of SFOAEs. These components pro-

vide more detailed insights into the generation of SFOAEs,

paving the way for relevant clinical utilities. SFOAEs are

measured as a function of stimulus frequency, which can be

transformed into equivalent SFOAE waveforms as a function

of time through inverse Fourier transform, hereafter referred

to as time-domain SFOAEs. Time-domain SFOAEs can be

interpreted as a summation of time varying components of

different frequencies. Time-frequency analysis (TFA) techni-

ques can be applied to segregate these components and obtain

simultaneous time and frequency information. The accuracy

of the TFA approach determines the validity of these

components.

Cochlear properties, such as the sharpness of mechani-

cal tuning and its variation along the cochlear length, can be

inferred from phase-gradient delays (Shera and Bergevin,

2012; Bergevin and Shera, 2010; Bergevin et al., 2015). The

phase-gradient delay is defined as the negative rate of change

of SFOAE phase with respect to frequency. Several signal

processing approaches have been proposed to estimate

phase-gradient delay from the raw phase data. The energy

weighting which weighs the raw delay values with respect to

the magnitude response, and peak picking (picks the delay

values only at magnitude peaks) were found to be less erro-

neous (Shera and Bergevin, 2012). However, multiple inter-

nal reflections may complicate the interpretation of SFOAE

delays and introduce bias in the estimation of phase-gradient

delays. Filtering out multiple internal reflections in the time-

frequency domain is one of the preferred approaches to cir-

cumvent this problem. To carry out filtering in the time-

frequency domain, the TFA techniques are applied over

time-domain SFOAEs to obtain time-frequency representa-

tions (TFRs). In the TFR, multiple internal reflection compo-

nents express themselves as delayed and possibly attenuated

components around the actual SFOAEs. Time-frequency fil-

tering masks regions in the TFR that correspond to multiple

internal reflections by making corresponding coefficients

zero and thereby removes the multiple internal reflection

components. The effectiveness of the filtering relies on the

accuracy of the TFA approach and, in turn, determines the

estimation accuracy for phase-gradient delay.

All TFA techniques are governed by the Gabor uncer-

tainty principle, which states that the time and frequency reso-

lutions are trade-offs (Boashash, 2015). A TFA method

resulting in good time resolution is likely to make compro-

mises on frequency resolution and vice versa. However, the

accuracy and compactness of TFR can be improved by choos-

ing method-dependent parameters, considering the nature of

the data. Therefore, it is essential to examine the suitability of

various TFA techniques for analyzing SFOAEs.a)Electronic mail: milanb@nmsu.edu
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The main goal of the current study was to present a

comparative assessment of different TFA approaches for

analyzing SFOAEs. There are three kinds of TFA

approaches: quadratic, linear, and nonlinear techniques.

Quadratic TFAs are used to obtain time-frequency energy

distribution instead of a TFR and enable a direct interpreta-

tion of instantaneous power spectrum and spectral energy

density. The linear TFAs satisfy the superposition principle,

which states that if a waveform is a linear combination of

some components then its TFR is the linear combination of

the TFRs of each of the constituent components. The nonlin-

ear techniques do not satisfy the superposition principle. The

performance of quadratic TFA approaches (e.g., Wigner-

Ville distribution) depends on the effective cancellation of

the cross terms, which is a major limitation. The cross terms

are artifacts that arise from the nonlinearity in quadratic

TFA approaches and cause interaction between the positive

and negative frequency terms when there are multiple fre-

quency tones present at a particular time (Boashash, 2015).

On the other hand, linear TFA techniques are efficient and

relatively computationally simpler to implement. Nonlinear

data-driven approaches, such as syncrosqueezing transform,

reassign the TFR and offer significant improvement in

obtaining a more accurate TFR (Rilling and Flandrin, 2008).

The accuracy of a TFA approach can be evaluated from the

analysis of simulated signals (e.g., linear and nonlinear fre-

quency modulated signals) with known instantaneous ampli-

tude and frequency information. The present study, using in
silico experiments, examined the accuracy of three popular

linear TFA [short-time Fourier transform (STFT), continu-

ous wavelet transform (CWT), Stockwell transform (ST)]

and two nonlinear TFA techniques [empirical mode decom-

position (EMD) and synchrosqueezed wavelet transform

(SWT)] specifically for SFOAE analysis.

The STFT is a widely used method and was derived

directly from discrete Fourier transform evaluated over a fixed

time-domain analysis window. The CWT introduces analysis

with varying time and frequency resolution by employing a

mother wavelet that dilates according to a specified scaling

function and translates in time. Due to the freedom in varia-

tion allowed for the mother wavelets, many of them are quite

distinct from the Fourier basis. The CWT analysis result is

referred to as time-scale representation instead of a TFR.

However, the time-frequency information can be deciphered

from CWT by appropriate mathematical mapping. The basis

function in ST is similar to that of a complex Mortlet wavelet

(Stockwell et al., 1996; Ventosa et al., 2008). Figures

1(a)–1(c) show the basis functions of STFT, CWT with a

complex Morlet wavelet, and ST correlated over a time-

domain SFOAE waveform. The basis function is dependent

on the frequency. For a fixed frequency, the basis function

translates over time, and correlation coefficient at each point

is an estimate of the spectral information at that time and fre-

quency. For a complex basis function, the real and imaginary

coefficients are computed separately, resulting in complex

valued spectral information. The dilation of basis function or

width of its envelope (also interpreted as the width of the win-

dow function) determines the frequency resolution. For STFT,

the width of the window function or dilation parameter is

fixed, giving rise to a fixed frequency resolution. However, in

the cases of CWT and ST the dilation parameter is dependent

on the frequency component being measured. For both CWT

and ST, dilation parameter is inversely proportional to the

analysis frequency. The basis function in ST is similar to that

of the CWT with complex Mortlet wavelet (Ventosa et al.,
2008). The ST differs from the CWT through the perspective

that it has a windowed Fourier basis that provides direct inter-

pretation of frequency. The ST, essentially, is a multi-

resolution extension of STFT, which combines the advantages

of STFT and CWT.

EMD is an adaptive and data-driven TFA method. The

data-driven decomposition property of EMD enables the seg-

regation of nearly independent constituent components. One

or more of the constituent components may correspond to

unwanted information, and this property has been utilized for

filtering out noise or extracting relevant information in multi-

ple domains (Kopsinis and McLaughlin, 2009). The patterns

in real-world data can be short and intermittent. EMD facili-

tates the discovery of intrinsic patterns at multiple scales,

while not requiring the rigid assumptions of harmonic or sta-

tionary data structures, and produces physically meaningful

intrinsic mode functions (IMFs; Mandic et al., 2013). For

instance, the electroencephalogram (EEG) is a key diagnostic

tool for pathology related to epileptic signals (interictal

spikes) that get contaminated by muscle artifacts. The EMD

has been used to remove these muscle artifacts from EEG sig-

nals (Safieddine et al., 2012). Each IMFs is a constituent com-

ponent that captures some distinct characteristics of a

composite multi-component waveform. The multiple internal

reflection components are constituent components of a com-

posite SFOAE waveform, and it is expected that one or more

IMFs may resemble them. Therefore, multiple internal reflec-

tion components can be rejected by removing the correspond-

ing IMFs. Motivated by this, an attempt was made to verify

the hypothesis that IMFs uniquely encode multiple internal

reflections and SFOAE components.

Synchrosqueezing was first introduced in the context of

analyzing auditory signals for improving the compactness or

concentration of the TFR (Daubechies and Maes, 1996).

Synchrosqueezing is a time-frequency reallocation method

that sharpens the TFR by reassigning its value to a different

point in the time-frequency plane, which is determined by

the local behavior of the TFR for a given time-frequency

point (Auger et al., 2013). Synchrosqueezing can be applied

over the TFR computed with STFT, CWT, or ST. Here, we

applied synchrosqueezing transform on CWT because of its

advantages over STFT and similarity with ST (Ventosa

et al., 2008).

In this study, we evaluated the strength and limitations

of various TFA techniques from the perspective of SFOAE

analysis. As the true value of parameters in real SFOAEs is

unknown, we analyzed simulated, but realistic SFOAE data.

For a comparative assessment, an objective criterion based

on the known value of the phase-gradient delay and three

subjective criteria based on ideal properties of TFR were

considered. Phase-gradient delay was considered as an effec-

tive objective measure due to the availability of actual

phase-gradient delay values from the simulated model and
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its relative importance in measuring cochlear properties. The

accuracy in estimation of phase-gradient delay is directly

related to the removal of multiple internal reflection compo-

nents. Removal of multiple internal reflection components

depends on the time-frequency filtering, which in turn

depends on the accuracy of the TFR. Thus, the accuracy of a

TFA method is directly related to the accuracy of phase-

gradient delay estimation. The CWT and ST are expected to

yield better accuracy than STFT due to their multi-resolution

ability. In addition, ST and CWT are expected to yield simi-

lar performance due to the similarity in their basis functions.

II. METHODS

A. Simulated SFOAEs

SFOAEs were simulated in accordance with the model

graciously shared by Dr. Christopher Shera (Shera and

Bergevin, 2012). The model parameters were kept similar to

a previous study, as far as was practicable (Shera and

Bergevin, 2012). The SFOAE pressure with multiple internal

reflections is expressed as

PSFOAEðf Þ ¼ P0ðf ÞGMEðf ÞRðf Þ; (1)

where P0(f) is the stimulus source pressure, GME(f) charac-

terizes round trip middle-ear transmission, and R(f) repre-

sents the cochlear reflectance. The cochlear reflectance is the

complex amplitude of reverse-traveling waves, normalized

with respect to forward traveling waves at the stapes.

The SFOAE pressure with additive noise N(f), at fre-

quency f is expressed as

PSFOAEðf Þ ¼ P̂SFOAEðf Þ þ Nðf Þ: (2)

N(f) consists of random complex numbers with normal distri-

bution. The root mean square noise levels were adjusted to

keep the mean signal-to-noise ratio (SNR) greater than

15 dB. The SNR values of real SFOAEs might not always be

acceptable at every stimulus frequency. In such cases, mea-

surements that do not pass the specified SNR criteria are

excluded from the analysis. The SFOAE frequencies

spanned between 0.4 and 8 kHz. The frequency spacing was

kept uniform with a spacing of 11 Hz.

FIG. 1. Illustration of translation and dilation of the basis functions (dotted) for (a) STFT, (b) CWT, and (c) ST to obtain TFR for SFOAE waveforms. Bold

black lines show the point wise multiplication of the basis function and SFOAE waveform.
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The distinction among emissions simulating different runs

was incorporated by a random variation of the irregularity

function. We created a total of 800 different sets of simulated

emissions for this study. To generate multiple internal reflec-

tion components, the stapes reflection coefficient for retrograde

cochlear waves was chosen as 0.58þ 0.58j, with a modulus

value of jRj ¼ 0:82. The magnitude plot and noise floor of

simulated SFOAEs with a mean SNR of 15 dB with different

reflection coefficients are shown in Fig. 2. For analysis, data at

each frequency that did not pass the minimum SNR criteria of

15 dB were discarded. The time-domain equivalent of SFOAE

was computed using inverse discrete Fourier transform. The

sampling rate was 44.1 kHz. One-sided recursive exponential

filters of the order 10 and cutoffs equal to one cycle were used

to cancel periodic repetitions in the time-domain.

B. TFA

TFA decomposes a waveform into constituent time-

localized frequency components. The time-frequency

decomposition extracts instantaneous amplitude and phase

change of individual components from a multi-component

signal. This information is particularly useful for OAE anal-

ysis for identification of spectral components that have dif-

ferent delay or latency characteristics.

The multi-component time-domain SFOAE signal s(t)
as a function of time variable t can be expressed as

sðtÞ ¼
XL

l¼1

slðtÞ þ eðtÞ; (3)

where sl(t) corresponds to the lth spectral component

with a frequency, represented mathematically as slðtÞ

¼ AlðtÞcosð2p/lðtÞÞ, and is interpreted as an oscillatory

mode or spectral component similar to Fourier analysis with

time varying amplitude, frequency, and phase. Here, e(t) rep-

resents the noise in the waveform or the residue contributing

to estimation errors and L denotes the number of components.

The objective of each TFA method is to extract the compo-

nents sl(t), their magnitudes Al(t), and their phases /l(t).

1. Linear TFA techniques

The generalized expression for linear transforms can be

expressed as

TFðt; f Þ ¼
ð�1
1

sðsÞW�t;f ðsÞ ds; (4)

where W�t;f ðsÞ is referred to as the basis function. The core of the

linear techniques is the choice of this basis functions, i.e., the

pre-assigned family of templates. The basis determines the shape

of the time-frequency atoms, and consequently, the time and fre-

quency resolutions. The inner products of a translating and dilat-

ing basis function with time-domain SFOAE waveforms result

in the time-frequency coefficient matrix. The elements of this

matrix are complex numbers encapsulating the magnitude and

phase at any given time and frequency. The types and properties

of the basis functions drive the values in the time-frequency

coefficient matrix. The specific basis functions corresponding to

STFT, CWT, and ST are discussed in Secs. II B 1 a–II B 1 c.

a. STFT. The STFT of a discrete domain SFOAE

sequence s(n) is expressed as

FIG. 2. Simulated SFOAE signals and noise floor with a mean SNR of 15 dB, and modulus of reflection coefficient (a) jRj ¼ 0 and (b) jRj ¼ 0:82.
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STFTðn; kÞ ¼
XN�1

m¼0

sðmÞwðm� nÞe�ðj2pkm=NÞ: (5)

Here, w(n) represents the time-domain window function.

Here, m, n, k, and N denote a temporary variable, time sam-

ples, frequency samples, and length of time-domain SFOAE

signal, respectively. The window function localizes the spec-

trum to a specific time point. Therefore, the type of window

function and its length play a major role in determining the

accuracy of the STFT. The basis function for STFT is the

window multiplied by the complex Fourier basis. The win-

dow slides in time to compute the frequency spectrum corre-

sponding to each point on the time-frequency grid. A

Hamming window with a width of 64 sample points was

chosen for simulations (Zelle et al., 2017). The window

width was determined by an exhaustive search to minimize

the delay estimation error. Because of the fixed width of this

window function, STFT has a fixed frequency resolution,

which leads to inaccuracies in identifying temporal variation

simultaneously for both low and high frequency compo-

nents. The TFRs obtained with STFT window widths of 32,

128, and 264 samples are shown in Fig. 3. By comparing the

TFRs, it can be observed that the spread along the frequency

axis decreases and the spread along the time axis increases

with increasing window width. In such a scenario, the most

accurate window width for analysis cannot be determined

with certainty unless the signal properties are known a pri-
ori. It is obvious that the outcomes are dependent on the win-

dow parameters.

b. CWT. The expression for CWT is similar to the gen-

eralized expression in Eq. (4). The basis function for CWT

(W�t;f ) is referred to as the “mother wavelet.” The mother

wavelet can be chosen from a broad range of families and is

governed by the wavelet admissibility conditions (Addison,

2017). The choice of the mother wavelet is dependent pri-

marily on the nature of data to be analyzed. Two basis func-

tions, a complex Morlet wavelet, and a basis whose shape

resembles a temporal envelope of the frequency response of

a low-pass Butterworth filter are used in the OAE literature

(Tognola et al., 1997; Sisto and Moleti, 2007). Shera and

Bergevin (2012) showed that both wavelets yield similar

FIG. 3. (Color online) TFR of a sample SFOAE signal computed by STFT with window widths of (a) 32, (b) 128, and (c) 256 samples.
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results. The complex Morlet wavelet basis from the MATLAB

(MathWorks, Natick, MA) signal processing toolbox was

chosen for the present analysis and is expressed as

W� tð Þ ¼
ffiffiffiffiffiffi
1

pfb

s
e2pitf0 e�t2=fb ; (6)

where fb controls the delay in time domain or bandwidth in

frequency domain and f0 is the center frequency.

c. ST. The ST belongs to the CWT family, but with an

added advantage of windowed Fourier basis function. The

ST is expressed as (Stockwell et al., 1996)

STðn; kÞ ¼
XN�1

m¼0

sðmÞwðm� nÞe�ðj2pkm=NÞ: (7)

The window function w(n) in ST is a frequency dependent

generalized Gaussian function with parameters adopted from

Mishra and Biswal (2016).

2. Nonlinear TFA techniques

a. EMD. The IMFs in EMD were computed in accor-

dance with the shifting theorem that characterizes the con-

stituent oscillatory modes within the waveform (Flandrin

et al., 2004). The EMD algorithm for extracting IMFs of a

time-domain SFOAE signal can be summarized as follows:

(i) Identify the local maxima and minima of the s(n).

(ii) Use cubic spline interpolation to join local maxima to

generate the upper envelope, and use the local min-

ima to generate the lower envelope Imin(n).

(iii) Find the local mean: Imean(n)¼ [Imax(n)þ Imin(n)]/2.

(iv) Extract the detail coefficients: d(n)¼ s(n)þ Imean(n).

(v) Check if d(n) is an IMF by verifying the following

two conditions: The number of extrema and the num-

ber of zero crossings must differ by less than one, and

at any given point the mean value of the envelope

defined by the local maxima and the envelope defined

by the local minima must be zero.

(vi) Repeat steps (i)–(iv) to extract the first IMF,

IMF1(n)¼ d(n).

After the first IMF was derived, the second IMF was

generated from the residue r(n)¼ s(n) – IMF1(n). This pro-

cess was iteratively conducted for finding all IMFs until the

final residue was obtained from which no more IMFs could

be derived. At the end of the decomposition, the SFOAE

waveform can be expressed as

sðnÞ ¼
XL

l¼1

IMFlðnÞ þ rðnÞ; (8)

where L is the number of IMFs, IMFl(n) is the lth IMF, and

r(n) is the final residue. The IMFs can be interpreted as coef-

ficients of data-driven basis functions that may represent

constituent spectral modes. Hilbert transform was applied

over the IMFs for finding their analytic equivalent, which

provided information regarding instantaneous amplitude and

phase variation of each IMF. Here, EMD along with Hilbert

transform is referred to as Hilbert-Huang transform (HHT).

The Fourier-like representation obtained by HHT can be

expressed as

sðnÞ ¼ R
XL

l¼1

AlðnÞejUlðnÞ

( )
; (9)

where Al(n) and Ul(n) denote the instantaneous amplitude

and phase of lth IMF at time index n, respectively, as com-

puted from the Hilbert transform. The notation R denotes

the real part of the complex values.

b. SWT. Reassigned TFRs can be obtained by applying

synchrosqueezing transform over an existing TFR. The accu-

racy of the reassigned TFRs are not limited by the Gabor

uncertainty principle, however, a higher accuracy is not

always guaranteed (Gardner and Magnasco, 2006).

Synchrosqueezing transformation is used to transform a repre-

sentation in the time-frequency plane to its corresponding dis-

tribution in the instantaneous time and instantaneous
frequency plane. The instantaneous frequency is defined as

the first derivative of the phase with respect to time, and the

instantaneous time is defined as first derivative of phase with

respect to frequency subtracted from the current time.

Synchrosqueezing alters the TFR obtained with any TFA

approach, as a result, the spread of energy in the time-

frequency plane gets concentrated around a relatively narrow

region and enables more specific information regarding the

TFR. In this study, synchrosqueezing transform was applied

over the CWT result with the analytic Morlet wavelet.

Synchrosqueezed transform applied over the CWT, referred

to as SWT, is expressed as

SWTðn; kÞ ¼ 1

Dx

X
ak :jxðak ;nÞ�xk j�Dx=2

WTðn; akÞa�ð3=2Þ
k

� ðak � aðk�1ÞÞ (10)

where WT(n,ak) represents the time-scale matrix computed

by CWT at time indices n and discrete scales ak. xðak; nÞ
¼ �fi=½WTðn; akÞ �WTðn� 1; akÞ�g denotes the instanta-

neous frequency. Dx¼xk – xk–1 denotes the spacing between

two successive frequency bins with indices k and k – 1.

C. Comparison metrics

1. Objective assessment criteria

Estimation of phase-gradient delay. A graphical illus-

tration of the procedure for canceling multiple internal

reflection components and estimating phase-gradient delay is

shown in Fig. 4. SFOAEs as a function of frequency were

converted into equivalent time-domain SFOAEs. An appro-

priate TFA algorithm was applied over the time-domain

SFOAEs to obtain the TFR. TFR gives the constituent time

varying spectral components of the SFOAE. Time-frequency

filtering was applied over the TFR to cancel out the multiple

internal reflection components.
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The first step in performing time-frequency filtering is to

extract the delay information from the TFR. Considering

TF(t,f) as the TFR matrix obtained from a given TFA tech-

nique, the column corresponding to a frequency f is a set of

values as a function of time, representing the time varying

magnitude and phase at that frequency. The magnitude plotted

with respect to time shows one or more peaks and valleys.

The time varying spectra provide the ability to distinguish

multiple internal reflection components from the primary

SFOAE reflection component. The primary component is

expected to have a peak magnitude greater than multiple inter-

nal reflections. The delay of the primary component can be

computed from the TFR by time-localizing the maximum

peak at each frequency. The location of maximum peak value

may not accurately correspond to the delay due to the pres-

ence of noise and may be affected by the inaccuracies in the

time-frequency method. Shera and Bergevin (2012) computed

delay from the energy distribution of TFR, which is a rela-

tively accurate procedure. The partial delay sTFR(t) is com-

puted as

spartialðt; f Þ ¼

ðt

0

sjTF s; fð Þj2

jTF s; fð Þj2
; (11)

where jTFðs; f Þj2 denotes the SFOAE energy at every location

in the time-frequency plane. The summation extends over the

entire length of the time-domain signal. The delay at each fre-

quency was recursively calculated according to the following

equation until a specific termination criterion was met:

sTFRðf Þ ¼ spartialðasTFRðf Þ; f Þ: (12)

The factor a is a constant. The recursive computation of

delay (sTFR) was terminated when the fractional difference

between any two successive delay estimations became less

than 1%.

In the second step, after obtaining the delay values corre-

sponding to each frequency, time-frequency filtering was per-

formed by masking the region around the delay versus

frequency curve. We adopted the time-frequency filtering pro-

cedure along with the parameter values reported in Shera and

Bergevin (2012). A tenth-order recursive exponential window

was used as a masking function for filtering (Shera and Zweig,

1993). This window function was centered around the time

point corresponding to the delay value, and was gradually

tapered to zero on both sides. The value of a in Eq. (12) deter-

mined the performance of the filtering. Shera and Bergevin

(2012) suggested that a value within the range of 1.6–1.9

would yield similar results. We fixed the value of a as 1.9 for

all simulations in this paper. The regions of the time-frequency

plane that may correspond to multiple internal reflections were

canceled out in the time-frequency filtering process.

Post filtering, inverse TFA was performed over the fil-

tered time-frequency spectra to obtain the filtered SFOAE

waveform in the time domain. Fast Fourier transform was

applied on this filtered waveform for obtaining the filtered

SFOAE in the frequency domain. The phase-gradient delay

was computed from the filtered SFOAE in the frequency

domain. The peak picking strategy was used to compute the

phase-gradient delay. Following initial computation, the

Loess smoothing with a factor of 0.9 was applied on the raw

phase-gradient delay data for obtaining the fitted phase-

gradient delay plot. The smoothing factor for Loess fitting

could be between 0 and 1. A value of 0 follows the raw val-

ues of phase-gradient delay, while a value of 1 applies maxi-

mum smoothing. It was found that a Loess factor of 0.9

resulted in minimum error when an estimated phase-gradient

delay was compared with a known phase-gradient delay.

2. Subjective assessment criteria

The phase-gradient delay was used as an objective mea-

sure for comparing various methods, primarily because the

true values were known from the simulated SFOAE model.

However, SFOAE analysis is not limited to cancellation of

multiple internal reflection components and estimation of

phase-gradient delay. Therefore, few additional assessment

criteria were considered, such as time-frequency energy con-

centration, frequency specificity, and extraction of constitu-

ent spectral components. As the true values of these

measures were not known, these measures are referred to as

subjective assessment criteria. Each criterion is evaluated

according to the theoretical foundations in time-frequency

signal processing and from the perspective of their utility in

physiological characterization.

FIG. 4. Block diagram describing the process of canceling multiple internal reflections through time-frequency filtering and estimation of phase-gradient

delay.
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a. Energy concentration. The TFR indicates how the

spectral components are distributed in the time-frequency

plane. Higher energy concentration implies a more specific

TFR and infers that the time and frequency domain leakages

are minimal. Higher energy concentration shows up as thin-

ner lines in TFR plot and implies less ambiguity in extract-

ing time-localized frequency information.

b. Frequency specificity. The spread of magnitude

around a particular frequency (width of the peak) was quan-

tified and referred to as frequency specificity (van Vugt

et al., 2007). Frequency specificity represents the amount of

spectral leakage and the ability to distinguish closely spaced

spectral components. It was defined as the average of nor-

malized magnitudes over time and can be expressed as

FSðkÞ ¼ 1

N

XN

n¼1

TF n; kð Þ: (13)

Here, n and k represent the time and frequency sample,

respectively.

c. Spectral components. The magnitude variation of

spectral components indicates the existence of multiple

delay components and shows their distinguishability.

Spectral components were extracted for 1, 2, 3, 4, 5, 6, 7,

and 8 kHz. The magnitude of each component was normal-

ized for a comparative assessment.

III. RESULTS

The TFRs for one set of simulated SFOAEs with and

without time-frequency filtering, computed by STFT, CWT,

ST, and SWT are shown in Fig. 5. The resolution of STFT

appears to be coarse. The TFRs of CWT and ST appear to be

similar. The TFR for SWT appears as concentrated thin

lines. These thin lines represent instantaneous time and fre-

quency values after reassignment of the energy.

The TFR of modes extracted from the EMD procedure

are presented in Fig. 6. The time-domain SFOAE waveform

was decomposed into five distinct constituent modes and

each mode has unique characteristics. Figure 6 suggests that

modes #1–3 have major contributions in the SFOAE wave-

form, whereas modes #4 and #5 have negligible contribu-

tions only in the low frequency range. The four most

significant modes were preserved for studying the impact on

phase-gradient delay estimation.

The mean percentage of errors for phase-gradient delay

estimation for various methods for SFOAEs simulated with-

out multiple internal reflections are plotted in Fig. 7(a). It

shows that none of the filtering methods, excluding SWT,

introduce significant bias in phase-gradient delay estimation.

The root mean square estimation errors, computed across

frequencies were 1.60, 2.78, 3.38, and 3.24% for unfiltered,

STFT, CWT, and ST filtering, respectively. All the methods

except SWT gave comparable results and were similar to the

unfiltered data with estimation errors less than 5%.

Figure 7(b) shows the mean percentage of errors in esti-

mating phase-gradient delay when multiple internal

reflection components were present (i.e., jRj ¼ 0:8). The

mean error in phase-gradient delay estimation without filter-

ing was roughly 30%–40%. The root mean square errors

after time-frequency filtering, combined across all frequen-

cies for STFT, CWT, and ST were found to be 6.41, 3.91,

and 3.52%, respectively. It appears that the mean errors for

all TFA methods but SWT were less compared to the unfil-

tered condition. For EMD filtering, the mean error in esti-

mating phase-gradient delay was nearly 25%. The modes in

EMD did not appropriately represent the SFOAE compo-

nents, therefore, further analysis for EMD is not presented.

Figure 8 shows the frequency specificity of the TFA

techniques for a representative SFOAE signal. The height of

the peak at each frequency of interest represents the relative

contribution of that spectral component. The wider peaks

indicate that frequency specificity of STFT is the poorest

among all the methods. The STFT parameters can be altered

to obtain narrower peaks; however, we have already opti-

mized it with respect to the known phase-gradient delay, i.e.,

the parameters that gave minimal errors in phase-gradient

delay estimation. There can be one and only one TFR of a

given signal that is correct. There is an inherent assumption

that the method (with optimal parameters) that gives the

most accurate TFR will likely provide accurate characteriza-

tion of other subjective metrics. The exact values of other

metrics were not known from the model, so it is not appro-

priate to vary the optimal TFA parameters for each metric.

The number of peaks and specificity in case of CWT and ST

are superior to STFT. The ST shows narrower peaks com-

pared to the CWT. In addition, the number of peaks in case

of ST are more than that of CWT. SWT demonstrates very

good frequency specificity, or anti-leakage property, due to

the reassignment.

The time varying spectral components corresponding to

1–8 kHz with 1 kHz spacing were extracted from the TFR

and are shown in Fig. 9. The magnitude of each component

was normalized within the test for a comparative assessment.

Each peak in the magnitude plot of a spectral component

denotes a constituent subcomponent with a specific delay.

The 1 kHz component has two distinct peaks when extracted

from TFR computed by CWT and ST. The 1 kHz spectral

component extracted through STFT has more than two

peaks. The results are similar for other frequencies.

The average of TFR-extracted spectral components are

shown in Fig. 10. Ideally, the average of all TFR-extracted

spectral components should correspond to the envelope of

the time-domain SFOAE signal. However, in practice, this is

not the case due to the time versus frequency trade off gov-

erned by the Gabor uncertainty principle. The closer resem-

blance to the SFOAE envelope indicates more accurate time

resolution. The four methods closely track the variation of

magnitude envelopes of time-domain SFOAEs with nearly

equivalent efficacy. The shape of the envelopes was found to

be similar for STFT, CWT, and ST.

IV. DISCUSSION

The relative performances of STFT, CWT, ST, EMD,

and SWT were examined for SFOAE analysis. The
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effectiveness of these TFAs in removing multiple internal

reflections for estimating phase-gradient delays from 800
SFOAE simulations was compared. Additionally, their fre-

quency specificity and usefulness for obtaining desired spec-

tral components were evaluated.

The mean phase-gradient delay estimation errors for

STFT, CWT, and ST were found to be very similar, with the

lowest errors for ST. The selected window length for STFT

minimized the error in estimation for phase-gradient delay.

The near equivalent performance of STFT, according to the

theory of multi-resolution analysis (Boashash, 2015), sug-

gests that the variation of spectral components is minimal.

This does not necessarily mean that real SFOAEs do not

have fast varying components.

The mode decomposition property of EMD is utilized to

extract features and segregate noise or unwanted information

(Kopsinis and McLaughlin, 2009). However, EMD could

only partially filter out multiple internal reflections when

evaluated at a group level (800 simulations). For EMD to

work, the extracted IMFs should independently model the

FIG. 5. (Color online) TFRs of a sample SFOAE waveform (left column) and their corresponding time-frequency filtered residues (right column) computed

with various TFA methods, STFT, CWT, ST, and SWT.

634 J. Acoust. Soc. Am. 143 (2), February 2018 Milan Biswal and Srikanta K. Mishra



SFOAE components and multiple internal reflections. The

IMFs can be extracted in several ways. We evaluated the

basic method for computing IMFs via the sifting technique.

However, if IMFs extracted by some other technique can

uniquely model the SFOAE and multiple internal reflection

components, EMD based filtering may perform better.

The cancellation of multiple internal reflections was

poor for filtering with SWT, as well. Reconstructing part of

the signal corresponding to direct emission from the ridges

of the SWT time-frequency grid potentially could resolve

this issue, however, it requires developing a filtering

approach based on the tracking of appropriate time-

frequency ridges.

The root mean square estimation errors were less than

5% for SFOAEs without multiple internal reflections for all

the methods except SWT. This implies that the method,

which gives accurate phase-gradient delay estimation when

multiple internal reflections are present, does not introduce

any signal processing errors in the absence of multiple inter-

nal reflections. The present results for the CWT method are

comparable to that of Shera and Bergevin (2012). They

reported a mean error of 5% for the CWT method for

SFOAEs simulated without multiple internal reflections. For

SFOAEs simulated with multiple internal reflections, the

root mean square estimation error for CWT filtering reduces

to 3.91% from a mean error of roughly 30%–40% without

filtering. These results are in conformance with those

reported by Shera and Bergevin (2012). They reported a

mean error of roughly 20%–30% for unfiltered SFOAEs and

a mean error of less than 1% with CWT filtering. The slight

FIG. 6. (Color online) Time-frequency representation of different intrinsic modes computed from EMD.
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mismatch with their results could be potentially due to the

randomness of simulated SFOAEs.

In cases of real SFOAEs, there is always some amount

of multiple internal reflections; however, there is no way to

know the degree of their contribution. The time-frequency

filtering with STFT, CWT, or ST does not introduce any sig-

nificant signal processing errors and efficiently removes the

multiple internal reflection components. It can be considered

FIG. 7. Mean errors in estimation of phase-gradient delay after time-frequency filtering for SFOAEs (a) without multiple internal reflection components

(jRj ¼ 0), and (b) with multiple internal reflection components (jRj ¼ 0:82), for various time-frequency analysis methods.

FIG. 8. Frequency specificity of a sample SFOAE signal computed with (a) STFT, (b) CWT, (c) ST, and (d) SWT.
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as a preferred approach to get rid of multiple internal

reflections.

A narrow peak with regard to frequency specificity indi-

cates that most of the energy is centered around a particular

frequency and that spectral leakage is minimal. The fre-

quency specificity of STFT was found to be poorest among

all methods. In contrast, ST and CWT yielded better and

comparable frequency specificity. Although a narrower win-

dow width could enhance the frequency specificity for

STFT, it will degrade the phase-gradient delay estimation

and adversely affect the extraction of constituent compo-

nents. The extracted SFOAE modes or IMFs for EMD could

not be mapped to analytical information, such as components

based on delay, as they do not refer to a fixed basis function.

FIG. 9. Time varying spectral components corresponding to frequencies (a) 1 kHz, (b) 2 kHz, (c) 3 kHz, (d) 4 kHz, (e) 5 kHz, (f) 6 kHz, (g) 7 kHz, and (h)

8 kHz.
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For SWT, the shapes of the peaks were arbitrary, which

makes characterization and segregation of components based

on delay challenging. SWT appears to have very sharp fre-

quency specificity, but has relatively higher phase-gradient

delay estimation errors.

The adopted SFOAE model is a phenomenological

model of the emission process. The multiple internal reflec-

tion components are assumed to have longer delay and very

low energy compared to SFOAEs. In cases of multiple sour-

ces, the delays are relatively shorter compared to multiple

internal reflection components. Thus, the time-frequency fil-

tering may not remove these relatively short delay compo-

nents. In such cases, these components can be tracked from

the TFR of filtered SFOAEs by extracting the time varying

spectral components.

Although these TFA methods were evaluated using sim-

ulated SFOAE analysis, similar conclusions could be

expected for the TFA of other types of OAEs, such as

distortion-product OAEs. These methods can be applied to

remove short delay components from transient-evoked

OAEs, and separate distortion and reflection components for

distortion-product OAEs.

In summary, the performance of STFT was slightly

poorer compared to CWT and ST due to its fixed frequency

resolution, which is determined by the fixed width of the

analysis window. This limitation is alleviated in case of

CWT due to the variation of scales of the Morlet wavelet.

The Morlet wavelet consists of the Gaussian modulated

exponential function. The ST has an exponential basis multi-

plied by the Gaussian window function. Because of this

similarity in basis functions, CWT and ST showed similar

performances. The synchrosqueezing operation reassigns the

wavelet TFR, resulting in thin curves representing high

energy concentrated regions. SWT showed minimum spec-

tral leakage and high energy concentration; however, it fails

to cancel multiple internal reflections. Although ST gave rel-

atively better performance among the five tested TFA meth-

ods, it can be concluded that either ST or CWT is

appropriate for SFOAE analysis.
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